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1 Preamble 

Here, we adapt an existing kin-selection model of exclusively-male warfare (7,23) to incorporate 

participation in warfare by both men and women. Specifically, we conceptualize the “bravery” 

trait – which in the studies by Lehmann & Feldman (7) and Micheletti et al. (23) measures the 

investment in warfare of a given individual – as the probability that that individual joins the war 

party when the group is involved in a war, and we term this trait “probability of participation” or 

“participation” in short. We consider the evolution of two traits: male participation, which is 

exhibited only by men, and female participation, which is exhibited only by women. 
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2 Fitness 

Firstly, we derive the fitness of a focal young adult of sex i ∈{m,f}, in a focal group, following 

the life cycle described in Methods. With probability 1 – mi, the focal young adult of sex-i does 

not migrate from the focal group. In every generation, each post-migration group can attack one 

randomly-chosen group. With probability 1 – a, the focal group is not attacked by the other 

group and in this case the focal sex-i young adult competes for Ni breeding spots with Nf Ki sex-i 

young adults (a fraction 1 – mi of which originated from the focal group and a fraction mi 

migrated from another group and in this way the migration terms cancel out; Nf is adult females) 

such that their probability of securing a breeding spot is Ni/(Nf Ki). Alternatively, with probability 

a, the focal group is attacked and the attacking group loses the war with probability 1 – ωʹʹ, 

where ωʹʹ ≡ ω(Ωm,Ωf, Ωmʹ, Ωfʹ),Ωi is the average level of sex-i participation of the attacking 

group, and Ωiʹ is the average level of sex-i participation of the focal group. In this case, the 

probability of obtaining reproductive success for a random sex-i young adult in the group must 

be corrected by τi(Ωiʹ) and that of the focal sex-i young adult by τi(Ωi), where τi(Ωi,ind) is sex-i 

competitiveness due to sex-i participation (with dτi/dΩi,ind < 0, and τi(0) = 1), meaning that the 

focal sex-i young adult obtains a breeding spot with probability Niτi(Ωi)/(Nf Kiτi(Ωiʹ)). Otherwise, 

the attacking group wins the war with probability ωʹʹ. In this case the focal sex-i young adult 

competes for Nisi breeding spots with NfKisi sex-i young adults from their group and NfKi(1 – si) 

sex-i young adult from the attacking group. Thus, adding the appropriate competitiveness 

modifiers, the focal sex-i young adult obtains a breeding spot with probability Niτi(Ωi)si/(Nf 

Kiτi(Ωiʹ)si+ Nf Kiτi(Ωi)(1 – si)). Further, the focal group may attack one other group. With 

probability 1 – a, this does not happen, and in this case the focal sex-i young adult does not have 

the opportunity to obtain additional breeding spots. Alternatively, the focal group attacks the 

other group with probability a and loses the war with probability 1 – ωʹ, where ωʹ = ω(Ωmʹ, 

Ωfʹ,Ωm,Ωf), which again results in no additional opportunities for breeding spots. Otherwise, 

the focal group wins with probability ωʹ and in this case the focal sex-i young adult has access to 

an additional Ni(1 – si) breeding spots, for which he competes with NfKi(1 – si) sex-i young 

adults from their group and NfKisi sex-i young adults from the conquered group. Thus, adding the 

appropriate competitiveness modifiers, the focal sex-i young adult obtains a breeding spot in the 

defeated group with probability Niτi(Ωi)(1 – si)/(Nf Kiτi(Ωiʹ)(1 – si)+ Nf Kiτi(Ωi)si). Alternatively, 

the focal sex-i young adult migrates from the natal group with probability mi to a randomly 

chosen group. In this case, fitness is identical to the philopatry case and the migration terms 

cancel out (N.B. migration rates influence the relatedness structure of the population, see 3.2. 

Consanguinity and relatedness). Therefore, the absolute fitness of a focal sex-i young adult is 

equal to: 

 

𝑤i = ((1 − 𝑎) + 𝑎 ((1 − 𝜔′′)
𝜏i(𝛺i)

𝜏i(𝛺i
′
)

+ 𝜔′′
𝜏i(𝛺i)𝑠i 

𝜏i(𝛺i
′
)𝑠i+ 𝜏i(�̅�i)(1−𝑠i)

) + 𝑎 𝜔′
𝜏i(𝛺i)(1−𝑠i)

𝜏i(𝛺i
′
)(1−𝑠i)+𝜏i(�̅�i)𝑠i

)
𝑁i

𝑁f𝐾i
                     (A1) 
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The average fitness of a sex-i young adult in the population iswi = Ni/(NfKi) and the relative 

fitness of the focal sex-i young adult is given by Wi = wi /wi.  

3 Participation 

3.1 Marginal fitness 

In a sex-structured population, the relative fitness of an individual of unspecified sex is given by 

W = cm Wm + cf Wf which is an average of the fitness of the two sexes, weighted by the class 

reproductive values of the two sexes, cm and cf (53,54,57,75,76). Consider a locus G, which 

controls participation of sex i ∈{m,f} Ωi, a trait expressed only by young adults of sex i. Let g be 

the genic value of the focal individual for this gene, G the breeding value of the focal individual, 

Gʹ the breeding value of a randomly-chosen groupmate of the focal individual, andG the 

average of the population. Under the assumption of vanishing genetic variation – all breeding 

values of the population clustered around the mean (53-54) –  the direction of natural selection is 

given by: 

 
d𝑊

d𝑔
= 𝑐m

d𝑊m

d𝑔m
 + 𝑐f

d𝑊f

d𝑔f
 ,                                                                                                                                    (A2) 

 

with all derivatives evaluated at g = gm = gf  =G. 

 The derivative dWi/dgi describes the impact of the genic value of a gene drawn from a 

young adult of sex i on their relative fitness. It can be expanded to reveal a direct fitness 

component (first addend), an indirect fitness component (second addend) and associations 

between genic values, breeding values and phenotypes (derivatives), obtaining: 

 
d𝑊i

d𝑔i
=

∂𝑊i

∂Ωi

dΩi

d𝐺

d𝐺

d𝑔i
+

∂𝑊i

∂Ωi′

dΩi′

d𝐺′

d𝐺′

d𝑔i
= (

∂𝑊i

∂Ωi
𝑝self +

∂𝑊i

∂Ωi
′ 𝑝ii) 𝛾 ,                                                                   (A3) 

 

where dWi/dΩi is the impact of the participation phenotype of the focal sex-i individual on their 

fitness, dWi/dΩiʹ is the impact of the participation phenotype of a random sex-i individual on the 

fitness of the focal sex-i individual, pself = dG/dgi is the consanguinity of the focal individual of 

sex i to themselves, pii = dGʹ/dgi is the consanguinity between the focal individual of sex i and a 

random individual of the same sex in their group, and ɣ = dΩi/dG = dΩiʹ/dGʹ is the correlation 

between an individual’s phenotype and their breeding value. 

 Analogously, the derivative dWj/dgj describes the impact of the genic value of a gene 

drawn from a young adult of the other sex on their relative fitness. It can be expanded to reveal 

the indirect fitness component (there is no direct fitness component, as the phenotype is 

expressed by young adults of sex i alone) and associations between genic values, breeding values 

and phenotypes (derivatives), obtaining: 

 
d𝑊j

d𝑔j
=

∂𝑊j

∂Ωi′

dΩi′

d𝐺′

d𝐺′

d𝑔j
=

∂𝑊j

∂Ωi′
 𝑝ij 𝛾 ,                                                                                                                      (A4)                                                                         
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where dWj/dΩiʹ is the impact of the participation phenotype of a random sex-i individual on the 

fitness of the focal individual of the other sex, pij = dGʹ/dgj is the consanguinity between the 

focal individual of the other sex and a random sex-i individual in their group, and ɣ = dΩiʹ/dGʹ is 

the correlation between an individual’s phenotype and their breeding value. 

Both ω and τi are functions of Ωi (see Methods). Therefore: ∂Wi/∂Ωi = 

(∂Wi/∂τi(Ωi))(∂τi(Ωi)/∂Ωi), ∂Wi/∂Ωi' = (∂Wi/∂ω')(∂ω'/∂Ωi') – (∂Wi/∂ω'')(∂ω''/∂Ωi') + 

(∂Wi/∂τi(Ωi'))(∂τi(Ωi')/∂Ωi'), and ∂Wj/∂Ωi' = (∂Wj/∂ω')(∂ ω'/∂Ωi') – (∂Wj/∂ω'')(∂ω''/∂Ωi'), where 

∂τi(Ωi)/∂Ωi = ∂τi(Ωi')/∂Ωi' = – τi(Ωi) ci and ∂ω'/∂Ωi' = –∂ω''/∂Ωi' = bi. Substituting these 

expressions and Eq. A3-4 into Eq. A2, we obtain: 

 
d𝑊

d𝑔
= 𝑐i (

∂𝑊i

∂𝜏i(𝛺i)
 (−𝜏i(�̅�i)𝑐i)𝑝self + (

∂𝑊i

∂ω′  𝑏i +
∂𝑊i

∂ω′′  𝑏i +
∂𝑊i

∂𝜏i(𝛺i′)
 (−𝜏i(�̅�i)𝑐i)) 𝑝ii) 𝛾  + 𝑐j (

∂𝑊j

∂ω′  𝑏i +
∂𝑊j

∂ω′′ 𝑏i) 𝑝ij 𝛾  

(A5)                                                                         

 

Population average participation of sex i increases whenever the condition dW/dg > 0 is 

respected. Considering that cf = cm = 1/2 under diploid inheritance, this condition is given by: 

 

−𝑐i𝑝self + (1 − 2 �̅� 𝑠i (1 − 𝑠i))𝑐i𝑝ii + 2(1 − 𝑠i)𝑏i𝑝ii + 2(1 − 𝑠j)𝑏i𝑝ij > 0                              (A6)                                                                         

 

Dividing by pself to obtain rii = pii/pself and rij = pij/pself (see 3.2. Consanguinity and relatedness) 

and rearranging terms yields condition [1] in the main text. 

 

3.2 Consanguinity and relatedness 

Given two individuals, A and B, and a locus, the coefficient of consanguinity between the two at 

that locus, pAB, is equal to the probability of identity-by-descent between a gene randomly-drawn 

from that locus in individual A and a gene randomly-drawn from the same locus in individual B 

(77). In the case in which the second individual coincides with the first, i.e. B=A, the 

consanguinity of an individual to themselves is obtained and it is given by pself = (1 + f )/2. The 

inbreeding coefficient f is the consanguinity between two mating partners, one from each sex, in 

a post-competition group and it is given by f = φmf px. Analogously, the consanguinity of two 

sex-i adults in a post-competition group is given by pii,adult = φii px, where again i ∈{m,f}. The 

coefficients φmf = (1 – aω (2smsf – sm – sf)(1 – mm)(1 – mf) and φii = (1 – 2aω si(1 – si))(1 – 

mi)2 are the probabilities that two adults of opposite sex and two sex-i adults, respectively, who 

are in the same post-competition group, were born in the same group. px is the consanguinity of 

individuals born in the same group and is given by: 

 

𝑝x =
1

4
(

1

𝑁m
𝑝self +

𝑁m−1

𝑁m
𝑝mm,adult) +

1

2
𝑓 +

1

4
(

1

𝑁f
𝑝self +

𝑁f−1

𝑁f
𝑝ff,adult)                                    (A7) 

 

which, substituting the appropriate consanguinities and solving for px, becomes: 
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𝑝x =
(𝑁m+𝑁f) 𝜑mf

8 𝑁m 𝑁f−2𝑁f(𝑁m−1) 𝜑mm−2𝑁m(𝑁f−1) 𝜑ff−(4𝑁m 𝑁f+ 𝑁m+𝑁f)𝜑mf
 .                                               (A8) 

 

The consanguinity of a focal sex-i young adult to a random young adult of the same sex in their 

post-migration group is equal to the probability that they were born in the same group and that 

neither migrated, namely pii = (1 – mi)2 px. Analogously, the consanguinity of the focal sex-i 

young adult to a random young adult of the opposite sex in their post-migration group is given 

by pij = (1 – mi)(1 – mj) px.  

 Given again two individuals, A and B, the coefficient of relatedness between the two, 

rAB, is equal to the consanguinity of individual B to individual A, pAB, divided by the 

consanguinity of individual B to themselves, pBB = pself (77). Therefore, the relatedness of 

individuals born in the same group is given by rx = px/pself, the relatedness of a focal sex-i young 

adult to a random young adult of the same sex in their post-migration group is given by rii = 

pii/pself = (1 – mi)2 rx and the relatedness of a focal sex-i young adult to a random young adult of 

the other sex in their post-migration group is given by rij = pij/pself = (1 – mi)(1 – mj) rx.  

 

4 Participation equilibria in the absence of other sex differences in the ecology of war 

Consider a case in which there are no sex differences in the ecology of war other than potential 

differences in participation: bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), ci(Ωi) = c(Ωi), mi = m, and si = s, for 

all i∈{m,f}. It follows that rii = rij = r and si(1-si) = Mi = M (admixture). Therefore, the marginal 

fitness function for the participation of sex i is given by 𝜃i =  4(1 − 𝑠)𝑟𝑏(Ω̅i, Ω̅j) −

(1 − (1 − 2�̅�𝑀)𝑟)𝑐(Ω̅i). Notice that the two marginal fitness functions for the two sexes are 

completely symmetrical. That is, one can be obtained from the other simply by exchanging i and 

j labels. This implies that, in a streamline plot (see Fig. 1), streamlines and equilibria for the 

participation of the two sexes are symmetrical with respect to the (0,0)-(1,1) diagonal, 

independently of the specific functional forms of c and b.  

We now derive the condition for pairs of participation values of the two sexes to be 

equilibria and for these equilibria to be stable. For simplicity, we make three assumptions:  

 

Assumption 1: The benefit function b is a strictly monotonically increasing or decreasing 

function of the participation of sex i. This can be expressed mathematically as: 

 

(
𝜕𝑏(�̅�𝑖,�̅�𝑗)

𝜕�̅�i
|�̅�𝑖=�̂�, �̅�𝑗=�̂�′ < 0) ∨ (

𝜕𝑏(�̅�𝑖,�̅�𝑗)

𝜕�̅�i
|�̅�𝑖=�̂�, �̅�𝑗=�̂�′ > 0) ∀�̂�, �̂�′ ∈ [0,1].                                                                          (A9) 

 

Assumption 2: The cost function c is a strictly monotonically increasing or decreasing function 

of the participation of sex i. This can be expressed mathematically as: 

 

(
𝜕𝑐(�̅�i)

𝜕�̅�i
|�̅�𝑖=�̂� < 0) ∨ (

𝜕𝑐(�̅�i)

𝜕�̅�i
|�̅�𝑖=�̂� > 0) ∀�̂� ∈ [0,1].                                                                              (A10) 
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Assumption 3: The ratio of the benefit function and the cost function is a strictly monotonically 

increasing or decreasing function of the participation of sex i. This can be expressed 

mathematically as: 

 

(
𝜕(

𝑏(�̅�i,�̅�j)

𝑐(�̅�i)
)

𝜕�̅�i
|�̅�𝑖=�̂�, �̅�𝑗=�̂�′ < 0) ∨ (

𝜕(
𝑏(�̅�i,�̅�j)

𝑐(�̅�i)
)

𝜕�̅�i
|�̅�𝑖=�̂�, �̅�𝑗=�̂�′ > 0) ∀�̂�, �̂�′ ∈ [0,1].                                                               (A11) 

 

Considering that each participation term can assume either boundary (0 and 1) or intermediate 

values, we need to consider ten separate cases: the four corners of the square, the four sides, the 

diagonal, and the interior (non-diagonal). 

 

i) �̅�i  =  0, for all  i ∈{m,f}; The condition for this point to be a stable equilibrium is that the 

marginal fitness for participation of the two sexes are both negative, i.e. 𝜃i|�̅�i=0,�̅�j=0 < 0. If 

c(0)>0, this requires 𝑏(0,0)/𝑐(0) < 𝑃, where 𝑃 = (1 − (1 − 2�̅�𝑀)𝑟)/4(1 − 𝑠)𝑟. If c(0)<0, this 

requires 𝑏(0,0)/𝑐(0) > 𝑃, which can never be satisfied. 

 

ii) �̅�i  =  1, for all  i ∈{m,f}; The condition for this point to be a stable equilibrium is that the 

marginal fitness for participation of the two sexes are both positive, i.e. 𝜃i|�̅�i=1, �̅�j=1 > 0. If 

c(0)>0, this requires 𝑏(1,1)/𝑐(1) > 𝑃. If c(0)<0, it requires 𝑏(1,1)/𝑐(1) < 𝑃. 

 

iii) �̅�𝑖  =  1 and �̅�𝑗  =  0, for all i ∈{m,f} and j ∈{m,f}, j≠i; The condition for this point to be a 

stable equilibrium is that the marginal fitness for participation of sex i is positive and that of the 

other sex is negative, i.e. 𝜃i|�̅�i=1,�̅�j=0 > 0 and 𝜃j|�̅�j=0, �̅�i=1 < 0. We consider the four possible 

cases:  

1) If c(0)>0 and c(1)>0, the condition requires 𝑏(0,1)/𝑐(0) < 𝑃 < 𝑏(1,0)/𝑐(1), and 

considering Assumption 2, this implies 𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  <  0 ∀�̂� ∈ [0,1]. 

2) If c(0)<0 and c(1)>0, the condition requires 𝑏(0,1)/𝑐(0) > 𝑃 and 𝑏(1,0)/𝑐(1) > 𝑃, 

and the former is never satisfied. 

3) If c(0)>0 and c(1)<0, the condition requires 𝑏(1,0)/𝑐(1) < 𝑏(0,1)/𝑐(0) < 𝑃, and 

considering Assumption 2, this implies 𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  <  0 ∀�̂� ∈ [0,1]. 

4) If c(0)<0 and c(1)<0, the condition requires 𝑏(0,1)/𝑐(0) > 𝑃 and 𝑏(1,0)/𝑐(1) < 𝑃, 

and the former is never satisfied. 

 

iv) �̅�𝑖  =  0 and �̅�𝑗  =  1, for all i ∈{m,f} and j ∈{m,f}, j≠i; the condition for this point to be a 

stable equilibrium is identical to that of case iii). Therefore, when (1,0) is stable, (0,1) is also 

stable, and vice versa.  
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v) �̅�i = �̃� ≠ 0,1 and �̅�j  =  0, for all i ∈{m,f} and j ∈{m,f}, j≠i; The condition for this point to 

be an equilibrium is that the marginal fitness for participation of sex i is equal to zero and that of 

the other sex is negative, i.e. 𝜃i|�̅�i=�̃�≠0,1, �̅�j=0 = 0 and 𝜃j|�̅�j=0, �̅�i=�̃�≠0,1 < 0. We consider the 

four possible cases: 

1) If 𝑐(�̃�) > 0 and c(0)>0,  the condition requires 𝑏(0, �̃�)/𝑐(0) < 𝑏(�̃�, 0)/𝑐(�̃�) = 𝑃. 

Considering Assumption 2, this implies 𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  <  0 ∀�̂� ∈ [0,1]. If an 

equilibrium exists, the condition for it to be stable is that 𝜕𝜃i/𝜕�̅�i|�̅�i=�̃�≠0,1, �̅�j=0 < 0, 

which requires 𝜕𝑏(�̅�i, �̅�j)/𝜕�̅�i|�̅�i=�̃�≠0,1, �̅�j=0 < 𝑃𝜕𝑏(�̅�i)/𝜕�̅�i|�̅�i=�̃�≠0,1, �̅�j=0. Considering 

Assumption 1, this implies (𝜕𝑏(�̅�𝑖 , �̅�𝑗)/𝜕�̅�i|�̅�𝑖=�̂�, �̅�𝑗=�̂�′  < 0) ∀�̂�, �̂�′ ∈ [0,1].  

2) If 𝑐(�̃�) > 0 and c(0)<0, the condition requires 𝑏(�̃�, 0)/𝑐(�̃�) = 𝑃 and 𝑏(0, �̃�)/𝑐(0) >

𝑃, and the latter can never be satisfied.  

3) If 𝑐(�̃�) < 0 and c(0)>0, the condition requires 𝑏(�̃�, 0)/𝑐(�̃�) = 𝑃 and 𝑏(0, �̃�)/𝑐(0) <

𝑃, and the former can never be satisfied.  

4)If 𝑐(�̃�) < 0 and c(0)<0, the condition requires 𝑏(�̃�, 0)/𝑐(�̃�) = 𝑃 and 𝑏(0, �̃�)/𝑐(0) >

𝑃, and neither can be satisfied. 

 

vi) �̅�i  = 0 and �̅�j = �̃� ≠ 0,1, for all i ∈{m,f} and j ∈{m,f}, j≠i; the condition for this point to be 

a stable equilibrium is identical to that of case v). Therefore, when(�̃�, 0) is stable, (0, �̃�)  is also 

stable, and vice versa.  

 

vii) �̅�i = 1 and �̅�j  = �̃� ≠ 0,1, for all i ∈ {m, f} and j ∈ {m, f}, j ≠ i; the condition for this point 

to be an equilibrium is that the marginal fitness for participation of sex i is positive and that of 

the other sex is equal to zero, i.e. 𝜃i|�̅�i=1, �̅�j=�̃�≠0,1 > 0 and 𝜃j|�̅�j=�̃�≠0,1 , �̅�i=1 = 0. We consider 

the four possible cases:  

1) If 𝑐(�̃�) > 0 and c(1)>0,  the condition requires 𝑏(1, �̃�)/𝑐(1) > 𝑏(�̃�, 1)/𝑐(�̃�) = 𝑃. 

Considering Assumption 2, this implies 𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  <  0 ∀�̂� ∈ [0,1]. If an 

equilibrium exists, the condition for it to be stable is that 𝜕𝜃i/𝜕�̅�i|�̅�i=1 , �̅�j=�̃�≠0,1 < 0, 

which requires 𝜕𝑏(�̅�i, �̅�j)/𝜕�̅�j|�̅�i=1, �̅�j=�̃�≠0,1 < 𝑃𝜕𝑏(�̅�j)/𝜕�̅�j|�̅�i=1, �̅�j=�̃�≠0,1 . 

Considering Assumption 1, this implies (𝜕𝑏(�̅�𝑖 , �̅�𝑗)/𝜕�̅�i|�̅�𝑖=�̂�, �̅�𝑗=�̂�′ < 0) ∀�̂�, �̂�′ ∈

[0,1].  

2) If 𝑐(�̃�) > 0 and c(1)<0, the condition which requires 𝑏(1, �̃�)/𝑐(1) < 𝑏(�̃�, 1)/𝑐(�̃�) =

𝑃. Considering Assumption 2, this implies 𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  <  0 ∀�̂� ∈ [0,1]. If an 

equilibrium exists, the condition for it to be stable is that 𝜕𝜃i/𝜕�̅�i|�̅�i=1 , �̅�j=�̃�≠0,1 < 0, 

which requires 𝜕𝑏(�̅�i, �̅�j)/𝜕�̅�j|�̅�i=1, �̅�j=�̃�≠0,1 < 𝑃𝜕𝑏(�̅�j)/𝜕�̅�j|�̅�i=1, �̅�j=�̃�≠0,1 . 
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Considering Assumption 1, this implies (𝜕𝑏(�̅�𝑖 , �̅�𝑗)/𝜕�̅�i|�̅�𝑖=�̂�, �̅�𝑗=�̂�′ < 0) ∀�̂�, �̂�′ ∈

[0,1].  

3) If 𝑐(�̃�) < 0 and c(1)>0, the condition requires 𝑏(�̃�, 1)/𝑐(�̃�) = 𝑃 and 𝑏(1, �̃�)/𝑐(1) >

𝑃, and the former can never be satisfied.  

4)If 𝑐(�̃�) < 0 and c(1)<0, the condition requires 𝑏(�̃�, 1)/𝑐(�̃�) = 𝑃 and 
𝑏(1,�̃�)

𝑐(1)
< 𝑃, and 

the former can never be satisfied. 

 

 

viii) �̅�i  = �̃� ≠ 0,1 and �̅�j = 1, for all i ∈{m,f} and j ∈{m,f}, j≠i; the condition for this point to 

be a stable equilibrium is identical to that of case vii). Therefore, when(�̃�, 1) is stable, (1, �̃�)  is 

also stable, and vice versa.  

 

ix) �̅�i = �̃�  ≠ 0,1, for all i∈{m,f}; The condition for a point on the diagonal to be an 

equilibrium is that the marginal fitness for participation of sex i is equal to that of the other sex 

and both are equal to zero, i.e. 𝜃i|�̅�i =�̃�≠0,1 = 0, which requires 𝑏(�̅�i, �̅�j)/𝑐(�̅�i)|�̅�i =�̃�≠0,1 = 𝑃. 

This condition can only be satisfied if 𝑐(�̅�i)|�̅�i =�̃�≠0,1 > 0. Considering Assumption 3, there 

cannot be more than one equilibrium on the diagonal. If an equilibrium exists, the condition for it 

to be stable is that both eigenvalues of the Jacobian matrix of the model are negative. The 

Jacobian matrix of the model is:  

 

𝐽 = (

𝜕𝜃i

𝜕�̅�i

𝜕𝜃i

𝜕�̅�j

𝜕𝜃i

𝜕�̅�j

𝜕𝜃i

𝜕�̅�i

)                                                                                                                        (A12) 

 

The condition for both eigenvalues of the matrix to be negative is 𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  >  0 ∀�̂� ∈

[0,1] and 𝜕𝑏(�̅�i, �̅�j)/𝜕�̅�i|�̅�i=�̃� ≠0,1 = ½𝑃𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i =�̃�≠0,1. 

 

x) �̅�i ≠ �̅�j ≠ 0,1, for all i ∈{m,f} and j ∈{m,f}, j≠i; the marginal fitness functions for 

participation of the two sexes are identical with the exception of 𝑐(�̅�i) = 𝑐(�̅�j). The condition 

for this point to be a stable equilibrium is that 𝜃i|�̅�i≠�̅�j ≠0,1 = 𝜃j|�̅�i≠�̅�j ≠0,1 = 0, which requires 

𝑏(�̅�i, �̅�j)/𝑐(�̅�i)|�̅�i≠�̅�j ≠0,1 = 𝑏(�̅�j, �̅�i)/𝑐(�̅�j)|�̅�i≠�̅�j ≠0,1 = 𝑃. Since �̅�i ≠ �̅�j, this is impossible. 

Points (�̅�i, �̅�j) with �̅�i ≠ �̅�j ≠ 0,1 can never be equilibria. 

 

We now seek to demonstrate that nine equilibria configurations are not allowed. We consider 

them in turn: 
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I) stable equilibria at (�̃�, 0) with �̃� ≠ 0,1 and (1,0); this requires 𝑏(�̃�, 0)/𝑐(�̃�) < 𝑏(1,0)/𝑐(1). 

Since costs are required to be decelerating, it follows that 𝑐(�̃�) > 𝑐(1). As a consequence, 

𝑏(1,0) > 𝑏(�̃�, 0), but this is impossible because benefits are required to be decelerating. This 

stable equilibria configuration is thus not allowed. 

 

II) stable equilibria at (0, �̃�) with �̃� ≠ 0,1 and (0,1); this case is analogous to case I) above. 

 

III) stable equilibria at (1, �̃�) with �̃� ≠ 0,1 and (1,0) this requires 𝑏(�̃�, 1)/𝑏(1,0) < 𝑐(�̃�)/𝑐(1). 

Since costs are required to be decelerating, it follows that 𝑐(�̃�) > 𝑐(1). As a consequence, 

𝑏(1,0) > 𝑏(�̃�, 0), but this is impossible because benefits are required to be decelerating. This 

stable equilibria configuration is thus not allowed. 

 

IV) stable equilibria at (�̃�, 1) with �̃� ≠ 0,1 and (0,1); this case is analogous to case III) above. 

 

V) stable equilibria at (�̃�, �̃�) with �̃� ≠ 0,1 and (0, 0); this requires 𝑏(0,0)/𝑐(0) < 𝑏(1,1)/𝑐(1), 

which itself requires 𝜕(𝑏(�̅�i, �̅�j)/𝑐(�̅�i))/𝜕�̅�i > 0 and as a consequence (𝜕𝑏(�̅�i, �̅�j)/

𝜕�̅�i)𝑐(�̅�i) − 𝑏(�̅�i, �̅�j)(𝜕𝑐(�̅�i)/𝜕�̅�i) > 0 which contradicts part of the condition for the first 

point to be an equilibrium (i.e. 𝜕𝑏(�̅�i, �̅�j)/𝜕�̅�i|�̅�i=�̃� ≠0,1 = ½𝑃𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i =�̃�≠0,1, see case ix) 

above). 

 

VI) stable equilibria at (�̃�, �̃�) with �̃� ≠ 0,1 and (0, 0); this case is analogous to case V) above. 

 

VII) stable equilibria at (�̃�, �̃�) with �̃� ≠ 0,1 and (1, 0) (or (1, 0)); the first point requires 

accelerating costs, while the second one requires decelerating costs. This stable equilibria 

configuration is thus not allowed. 

 

VIII) stable equilibria at (�̃�, �̃�) with �̃� ≠ 0,1 (0, �̃�′) with �̃�′ ≠ 0,1 (or (�̃�′, 0)); the first point 

requires accelerating costs, while the second one requires decelerating costs. This stable 

equilibria configuration is thus not allowed. 

 

IX) stable equilibria at (�̃�, �̃�) with �̃� ≠ 0,1 (1, �̃�′) with �̃�′ ≠ 0,1 (or (�̃�′, 1)); the first point 

requires accelerating costs, while the second one requires decelerating costs. This stable 

equilibria configuration is thus not allowed. 

 

Therefore, for any given set of parameters, two classes of stable equilibria configurations may be 

obtained depending on the cost function: 
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a) If costs are accelerating (𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  > 0 ∀�̂� ∈ [0,1]), there is always at least one stable 

equilibrium, either: a.1) one and only one stable equilibrium on the diagonal (�̃�, �̃�), extremes 

included; or a.2) a stable equilibrium on (0,0) and one on (1,1).   

 

b) If costs are decelerating (𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  > 0 ∀�̂� ∈ [0,1]), there is always at least one 

stable equilibrium, which cannot be on the diagonal. All equilibria configurations not excluded 

in cases I-IX) above are allowed and therefore possible configurations are: b.1) (0,0) and (1,1); 

b.2) (0,0); b.3) (1,1); b.4) (0, �̃�) and (�̃�, 0); b.5) (1, �̃�) and (�̃�, 1); b.6) (0, �̃�), (�̃�, 0), (1, �̃�′) and 

(�̃�′, 1); b.7) (0,1) and (1,0); b.8) (0,1), (1,0), (0,0); b.9) (0,1), (1,0), (1,1). 

 

4.1 Feedbacks between male and female participation 

The impact of increased participation of young adults (hereafter, “individuals”) of sex i ∈{m,f} 

on participation of individuals of the same sex is given by:  

 
𝜕𝜃i

𝜕�̅�i
= 4(1 − 𝑠)𝑟

𝜕𝑏i

𝜕�̅�i
− (1 − (1 − 2�̅�𝑠(1 − 𝑠))𝑟)

𝜕𝑐i

𝜕�̅�i
,                                                                  (A13) 

 

which is equal to the l.h.s. of condition [2] in the main text. Analogously, the impact of increased 

participation of individuals of sex i on participation of individuals of the other sex is given by:  

 
𝜕𝜃j

𝜕�̅�i
= 4(1 − 𝑠)𝑟

𝜕𝑏j

𝜕�̅�i
,                                                                                                                   (A14) 

 

which is equal to the l.h.s. of condition [3] in the main text.  

Whether personal costs for individuals of one sex increase with increasing participation of 

that same sex (“accelerating costs”) or decrease with increasing participation of that same sex 

(“decelerating costs”), determines the nature of the feedbacks between male and female 

participation. Personal costs of warfare consist in a loss of competitive ability for breeding spots. 

Competition for reproduction is fundamentally within-sex, because the total reproductive value 

of each sex is fixed (and, indeed, in this non-overlapping generations scenario, they are both 

equal to one half (75,78)). 

If costs are accelerating (𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  > 0 ∀�̂� ∈ [0,1]), an increase in participation of 

sex-i individuals results in other sex-i individuals being relatively disincentivized to participate 

in warfare and individuals of the other sex being relatively incentivized to participate in warfare, 

that is 𝜕𝜃i/𝜕�̅�i < 𝜕𝜃j/𝜕�̅�i (see also Fig. 1a). Specifically, three cases are possible: if 𝜕𝜃i/𝜕�̅�i >

0 and 𝜕𝜃j/𝜕�̅�i > 0, an increase in participation of sex-i individuals promotes further 

participation of individuals of the same sex less than participation of individuals of the other sex; 

if 𝜕𝜃i/𝜕�̅�i < 0 and 𝜕𝜃j/𝜕�̅�i > 0, an increase in participation of sex-i individuals inhibits further 

participation of individuals of the same sex and promotes participation of individuals of the other 
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sex; if 𝜕𝜃i/𝜕�̅�i < 0 and 𝜕𝜃j/𝜕�̅�i < 0, an increase in participation of sex-i individuals inhibits 

further participation of individuals of the same sex more than participation of individuals of the 

other sex.  

Analogously, if costs are decelerating (𝜕𝑐(�̅�i)/𝜕�̅�i|�̅�i=�̂�  < 0 ∀�̂� ∈ [0,1]), an increase in 

participation of sex-i individuals results in other sex-i individuals being relatively incentivized to 

participate in warfare and individuals of the other sex being relatively disincentivized to 

participate in warfare, that is 𝜕𝜃i/𝜕�̅�i > 𝜕𝜃j/𝜕�̅�i (see also Fig. 1b). Specifically, three cases are 

possible: if 𝜕𝜃i/𝜕�̅�i > 0 and 𝜕𝜃j/𝜕�̅�i > 0, an increase in participation of sex-i individuals 

promotes further participation of individuals of the same sex more than participation of 

individuals of the other sex; if 𝜕𝜃i/𝜕�̅�i > 0 and 𝜕𝜃j/𝜕�̅�i < 0, an increase in participation of sex-

i individuals promotes further participation of individuals of the same sex and inhibits 

participation of individuals of the other sex; if 𝜕𝜃i/𝜕�̅�i < 0 and 𝜕𝜃j/𝜕�̅�i < 0, an increase in 

participation of sex-i individuals inhibits further participation of individuals of the same sex less 

than participation of individuals of the other sex. 

 

5 Participation equilibria in the context of other sex differences in the ecology of war 

Consider now a case in which there may be sex differences in the ecology of warfare other than 

differences in participation. 

 

5.1 Accelerating costs 

We demonstrate that, in the case in which personal costs are accelerating, and the benefits, or 

personal costs, or migration rates, or admixture coefficients are not equal for the two sexes, a 

population with equal participation of the two sexes – i.e. a point on the diagonal, excluding the 

extremes – cannot be in a stable equilibrium, and therefore it will be pushed off of the diagonal. 

In addition, a difference in in one of the four ecological parameters listed above is sufficient 

condition for Ωi
* ≥ Ωj

* or Ωi
* ≤ Ωj

*, where Ωi
* is the stable level of participation for sex i ∈{m,f}. 

We consider four cases in turn: 

 

i) bi(Ωi, Ωj) ≠ bj(Ωi, Ωj), and ci(Ωi) = c(Ωi), mi = m, si = s, which implies Mi = M, for all  i ∈{m,f}; 

considering a population characterized by (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness function for 

participation of sex i is 𝜃i =  4(1 − 𝑠)𝑟𝑏i(�̃�, �̃�)  − (1 − (1 − 2�̅�𝑀)𝑟)𝑐(�̃�). If bi > bj, then θi > 

θj for every possible value of �̃�, which implies Ωi
* ≥ Ωj

*. 

 

ii) ci(Ωi) ≠ cj(Ωi) and bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), mi = m, si = s, which implies Mi = M, for 

all  i ∈{m,f}; considering a population characterized by (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness 

function for participation of sex i is 𝜃i =  4(1 − 𝑠)𝑟𝑏(�̃�, �̃�)  − (1 − (1 − 2�̅�𝑀)𝑟)𝑐i(�̃�). If ci < 

cj, then θi > θj for every possible value of �̃�, which implies Ωi
* ≥ Ωj

*. 
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iii) mi ≠ mj and bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), ci(Ωi) = c(Ωi), si = s, which implies Mi = M, for 

all  i ∈{m,f}; considering a population characterized by (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness 

function for participation of sex i is 𝜃i =  2 ((1 − 𝑠)(𝑟ii + 𝑟ij)) 𝑏(�̃�, �̃�)  − (1 − (1 −

2�̅�𝑀)𝑟ii)𝑐i(�̃�), where 𝑟ii = (1 − 𝑚i)
2𝑟x and 𝑟ij = (1 − 𝑚i)(1 − 𝑚j)𝑟x. If mi < mj, then θi > θj 

for every possible value of �̃�, which implies Ωi
* ≥ Ωj

*. 

 

iv) Mi ≠ Mj and bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), ci(Ωi) = c(Ωi), mi = m, for all  i ∈{m,f}; 

considering a point on the diagonal (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness function for 

participation of sex i is 𝜃i =  2 ((1 − 𝑠i) + (1 − 𝑠j)) 𝑟𝑏(�̃�, �̃�)  − (1 − (1 − 2�̅�𝑀i)𝑟)𝑐(�̃�). If 

Mi < Mj, then θi > θj for every possible value of �̃�, which implies Ωi
* ≥ Ωj

*. 

 

5.2 Decelerating costs 

We demonstrate that, in the case in which personal costs are decelerating, and the benefits, or 

personal costs, or migration rates, or admixture coefficients are not equal for the two sexes, a 

population with equal participation of the two sexes – i.e. a point on the diagonal, excluding the 

extremes – cannot be a stable equilibrium, and therefore it will be pushed off of the diagonal. 

This implies that, in the case in which two single-sex equilibria exist, the diagonal is contained in 

one of the two subspaces of initial conditions leading to such equilibria and therefore the two 

subspaces (basins of attraction) are of unequal size. We consider four cases in turn: 

 

i) bi(Ωi, Ωj) ≠ bj(Ωi, Ωj), and ci(Ωi) = c(Ωi), mi = m, si = s, which implies Mi = M, for all  i ∈{m,f}; 

considering a population characterized by (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness function for 

participation of sex i is 𝜃i =  4(1 − 𝑠)𝑟𝑏i(�̃�, �̃�)  − (1 − (1 − 2�̅�𝑀)𝑟)𝑐(�̃�). If bi > bj, then θi > 

θj for every possible value of �̃�, and in this case selection will drive the population off of the 

diagonal, and specifically towards the sex-i-only equilibrium, which implies that the basin of 

attraction for the sex-i-only equilibrium encompasses the diagonal and is therefore larger than 

the basin of attraction for the equilibrium where only the other sex participates. 

 

ii) ci(Ωi) ≠ cj(Ωi) and bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), mi = m, si = s, which implies Mi = M, for 

all  i ∈{m,f}; considering a population characterized by (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness 

function for participation of sex i is 𝜃i =  4(1 − 𝑠)𝑟𝑏(�̃�, �̃�)  − (1 − (1 − 2�̅�𝑀)𝑟)𝑐i(�̃�). If ci < 

cj, then θi > θj for every possible value of �̃�, and in this case selection will drive the population 

off of the diagonal, and specifically towards the sex-i-only equilibrium, which implies that the 

basin of attraction for the sex-i-only equilibrium encompasses the diagonal and is therefore 

larger than the basin of attraction for the equilibrium where only the other sex participates. N.B. 

ci < cj also results in a decrease in the indirect-fitness benefit sex-i individuals accrue via lost 
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reproductive opportunities in their home group being taken by their groupmates of the same sex 

(relaxation of kin competition; see second term in condition [1]). However, this benefit never 

outweighs the direct inclusive fitness cost associated with a loss of competitiveness (first term in 

condition [1]) and therefore lower personal costs for sex-i individuals always lead to the sex-i-

only outcome being more likely.  

 

iii) mi ≠ mj and bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), ci(Ωi) = c(Ωi), si = s, which implies Mi = M, for 

all  i ∈{m,f}; considering a population characterized by (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness 

function for participation of sex i is 𝜃i =  2 ((1 − 𝑠)(𝑟ii + 𝑟ij)) 𝑏(�̃�, �̃�)  − (1 − (1 −

2�̅�𝑀)𝑟ii)𝑐i(�̃�), where 𝑟ii = (1 − 𝑚i)
2𝑟x and 𝑟ij = (1 − 𝑚i)(1 − 𝑚j)𝑟x. If mi < mj, then θi > θj 

for every possible value of �̃�, and in this case selection will drive the population off of the 

diagonal, and specifically towards the sex-i-only equilibrium, which implies that the basin of 

attraction for the sex-i-only equilibrium encompasses the diagonal and is therefore larger than 

the basin of attraction for the equilibrium where only the other sex participates. 

 

iv) Mi ≠ Mj and bi(Ωi, Ωj) = b(Ωi, Ωj) = b(Ωj, Ωi), ci(Ωi) = c(Ωi), mi = m, for all  i ∈{m,f}; 

considering a point on the diagonal (�̃�, �̃�) with �̃� ≠ 0,1, the marginal fitness function for 

participation of sex i is 𝜃i =  2 ((1 − 𝑠i) + (1 − 𝑠j)) 𝑟𝑏(�̃�, �̃�)  − (1 − (1 − 2�̅�𝑀i)𝑟)𝑐(�̃�). If 

Mi < Mj, then θi > θj for every possible value of �̃�, and in this case selection will drive the 

population off of the diagonal, and specifically towards the sex-i-only equilibrium, which implies 

that the basin of attraction for the sex-i-only equilibrium encompasses the diagonal and is 

therefore larger than the basin of attraction for the equilibrium where only the other sex 

participates. 

 

6 Illustrations: war outcome functions 

For the purposes of illustration alone (Fig. 1,2) we make the war outcome functions explicit 

Notice that the results presented in this study and especially conditions (1-3) do not hinge on any 

particular functionalisation. We consider that the probability that the attacking group wins the 

war ω is a function of the fighting strengths σatt and σdef of the attacking and defending groups, 

specifically ω = σatt / (σatt + σdef). We consider that the fighting strengths of the two groups are 

themselves functions of a) the number of fighting individual of the two sexes, that is N·K·Ωi,att 

and N·K·Ωi,def (for the attacking and defending groups, respectively, assuming equal numbers of 

adults of the two sexes Nm=Nf=N) and b) the fighting effectiveness of the two sexes (ψi, for all 

i∈{m,f}). Considering that groups do not differ in total size and there are equal numbers of 

young adults of the two sexes and therefore only the proportions of fighting individuals of the 

two sexes influence the final outcome, we assume functional form σatt = ½ (ψi Ωi,att + ψj Ωj,att) 

and σdef = ½ (ψi Ωi,def + ψj Ωj,def).  
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